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Abstract: Remote sensing retrieval of evapotranspiration (ET), or surface latent heat exchange 9 

(LE), is of great utility for many applications. Machine learning (ML) methods have been 10 

extensively used in many disciplines, but so far little work has been performed systematically 11 

comparing ML methods for ET retrieval. This paper provides an evaluation of ten ML 12 

methodsfor estimating daily ET based on daily Global LAnd Surface Satellite (GLASS) radiation 13 

data and high-level Moderate-Resolution Imaging Spectroradiometer (MODIS) data products 14 

and ground measured ET data from 184 flux tower sites.Measurements of accuracy (RMSE, R2, 15 

and bias) and run time were madefor each of ten ML methods with a smaller training data set (n 16 

= 7910 data points) and a larger training data set (n= 69,752 data points). Inclusion of more input 17 

variables improved algorithm performance but had little effect on run time. The best results were 18 

obtained with the larger training data set using the bootstrap aggregation (bagging) regression 19 

tree (validation RMSE = 19.91 W/m2) and three hidden layer neural network (validation RMSE 20 

= 20.94 W/m2), although the less computationally demanding random kernel (RKS) algorithm 21 

also produced good results (validation RMSE = 22.22 W/m2). Comparison of results from sites 22 

with different ecosystem types showed the best results for evergreen, shrub, and grassland sites, 23 
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and the weakest results for wetland sites. Generally, performance was not improved by training 24 

with data from only the same ecosystem type.  25 

Introduction  26 

Evapotranspiration (ET), often expressed as an energy flux, the latent heat of evaporation (LE), 27 

is an important linkage between the surface energy and water balances and an indicator of 28 

vegetation health. Compared to the radiative elements of the surface energy balance, there is 29 

more uncertainty in LE measurements. Ground-based measurements are made at small scales 30 

with weighing lysimeters, and at scales of tens of meters to kilometers with flux towers 31 

andscintillometers. However, these measurements are sparse outside the northern hemisphere 32 

midlatitudes. Remote sensing data, reanalyses, and ground-based observations have been 33 

combined in a variety of ways to retrieve LE. Reviews of methods for obtaining LE through 34 

remote sensing are available inZhang et al. (2016), Wang and Dickinson (2012), and Kalma et al. 35 

(2008). Some of these methods (e. g.  Wang and Liang 2008; Yao et al. 2011, 2013, 2015; Yebra 36 

et al. 2013; Helman et al. 2015) use statistical regression techniques.Carter and Liang 37 

(2018)evaluated a number of statistical regression formulas for obtaining LE.  38 

 39 

Machine learning (ML) methods are means of extracting patterns from data sets with little prior 40 

knowledge of those patterns. The best-known ML methods include neural networks (NN), tree 41 

methods, and support vector machines (SVMs). The model tree ensemble technique has been 42 

applied to the problem ofdetermining global trends in LE by Jung et al. (2010). Multiple studies 43 

have been conducted using machine learning techniques for downscaling LE (Ke et al. 2017, 44 

2016; Kaheil et al. 2008) and drought detection and forecasting (Rhee and Im 2017; Park et al. 45 

2016). There are also a number of studies comparing the performance of different ML techniques 46 
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for obtaining LE. In these studies (eg.Deo et al. 2016; Dou and Yang 2018)no single ML method 47 

produced the best results. Most of these studies, with the notable exception of Jung et al. 48 

(2010),involve training to measurements of LE from a relatively small number of locations (20 49 

or fewer). In previous studies where ML method comparisons are performed four or fewer 50 

methods are compared.  51 

 52 

The goal of this study is to evaluate the utility of a range of ML algorithms for obtaining LE 53 

from remote sensing data on a global basis, and to evaluate their performance for different 54 

ecosystem types.  55 

 56 

 57 

Data 58 

The remote sensing data used in this study are Global Land Surface Satellite (GLASS) radiation 59 

data and Moderate-Resolution Imaging Spectroradiometer (MODIS) high-level data products. 60 

Ground-based Fluxnet tower site data were also used. The data variables, sources, and spatial 61 

and time resolutions for each data set used are listed in Table 1. 62 

 63 

Table 1: Input and validation data used in this study 64 

 65 

Abbreviation Variable Source Frequency Spatial 
resolution 

LE Surface latent heat Fluxnet Half-hourly, averaged 
to daily 

Flux tower 
footprint 

Rn Net radiation at 
surface 

Fluxnet Half-hourly, averaged 
to daily 

Flux tower 
footprint 

DSR Downward surface 
radiation 

GLASS Daily 5 km 
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PAR Photosynthetically 
active radiation 

GLASS Daily 5 km 

NDVI Normalized 
difference vegetation 
index 

MODIS 16-day, interpolated to 
daily 

250 meters 

EVI Enhanced vegetation 
index 

MODIS 16-day, interpolated to 
daily 

250 meters 

LAI Leaf area index MODIS 8-day, interpolated to 
daily 

500 meters 

FPAR Fraction of 
photosynthetically 
adjusted radiation 

MODIS 8-day, interpolated to 
daily 

500 meters 

Albedo Albedo MODIS 8-day, interpolated to 
daily 

500 meters 

NBAR Nadir BRDF-adjusted 
reflectance 

MODIS 8-day, interpolated to 
daily 

500 meters 

 66 

The GLASS data set (Liang et al. 2013, 2014)consists of radiative and biophysical parameters 67 

generated using data from multiple satellite sensors. The products used here are the downward 68 

shortwave radiation (DSR) and photosynthetically active radiation (PAR). 69 

 70 

Several parameters obtained from MODIS were also used in this analysis: Normalized-difference 71 

vegetation index (NDVI) and enhanced vegetation index (EVI) (Didan 2015), leaf area index 72 

(LAI) and fraction of photosynthetically active radiation absorbed (FPAR) (Myneni and 73 

Knyazikhin 2015), surface albedo, and nadir BRDF-adjusted reflectance (NBAR) (Schaaf and 74 

Wang 2015a, 2015b). Subsets of all MODIS products used were generated centered on the 75 

coordinates of each flux tower site. All MODIS products were linearly interpolated to daily 76 

frequency. 77 

 78 

Flux tower data were used for validation of the ML algorithms, and also for testing the effects of 79 

using remote sensing vs. ground-based radiation data as input. A total of 184 flux tower sites 80 
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were used, 119 from the Ameriflux network (http://ameriflux.lbl.gov) and 65 from the 81 

Fluxnet2015 data set (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The half-hourly LE 82 

and net radiation (Rn) variables from these data were pre-processed by removing all data days for 83 

which there were not at least 40 of 48 possible observations present, then averaging the 84 

remaining observations. A map of the site locations and information about their distribution 85 

across ecosystem types is given in Carter and Liang (2018).  86 

 87 

A total of 79098 site-days of data were used, randomly partitioned twice into 7,910/ 35,594/ 88 

35,594 and 63,278/ 7,910/ 7,910 site-days of training, validation, and test data, 89 

respectively.These training, validation, and test data sets were used in every case except where 90 

only data from individual ecosystem types was used. Each site-day includes a flux tower LE 91 

value associated with the remote sensing parameters retrieved at the site for that day. For 92 

purposes of this study, we treated the flux tower LE values as “ground truth”, although flux 93 

tower footprints vary and may not always coincide closely with the pixel size of the remote 94 

sensing data and also require adjustment to compensate for lack of energy balance closure. 95 

 96 

Methods 97 

In order to use the ML algorithms properly, it is necessary to adjust one or more tunable 98 

parameters for each algorithm. This is done by training the algorithms with a training data set for 99 

different parameter values and checking against a validation data set until the optimum 100 

parameter values are found, for example by minimizing RMSE for the validation data set. Once 101 

the optimization is performed, the optimized algorithm is checked against a test data set separate 102 

from the training and validation data sets. Timing of a single iteration of training with each 103 
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training data set and checking with the validation data set was performed for each algorithm as a 104 

feasibility check, since it is necessary to repeat this process tens to hundreds of times to tune the 105 

algorithms. Timing was conducted on a server with 24 6-core 3.33GHz Intel Xenon X5680 106 

CPUs. 107 

 108 

Fourteen ML algorithms were subjected to initial timing tests with the smaller training data set. 109 

Based on the results of this timing, 10 of the original algorithms were tuned with the smaller 110 

training data set. Of those 10, 8 were found to run with enough efficiency for systematic tuning 111 

with the larger training data set to be feasible. The 14 ML algorithms considered are listed in 112 

Table 2, with references to descriptions of each of the algorithms. 113 

 114 

Table 2: Algorithms tested in this study.  115 

 116 
Family Full name Abbreviation Tuned with small 

training data set 
Tuned with large 
training data set 

Linear Regularized linear 
regression* 

RLR Yes Yes 

Least absolute 
shrinkage and selection 
operator regression* 

LASSO Yes Yes 

Elastic net 
regularization* 

ELASTIC Yes Yes 

Kernel  Gaussian process 
regression*(Murphy 
2012) 

GPR No No 

Kernel ridge regression 
(Murphy 2012) 

KRR Yes No 

Random kernel 
(Rahimi and Recht 
2009, Perez-Suay et al. 
2017) 

RKS Yes Yes 

Variational VHGPR No No 
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heteroscedastic 
Gaussian process 
regression(Lazaro-
Gredilla et al. 2014; 
Lazaro-Gredilla and 
Titsias 2011) 

Tree Regression tree* TREE Yes Yes 
Bootstrap aggregation 
(bagging) tree* 

BAGTREE Yes Yes 

Boosted regression 
tree* 

BOOST Yes Yes 

Neural 
network 

Standard neural 
network (1, 2, and 3 
hidden layers)* 

NN Yes Yes 

Extreme learning 
machine (Huang et al. 
2006) 

ELM No No 

Support 
vector 

Support vector 
regression* (Smola 
and Scholkopf 2004) 

SVR Yes No 

Relevance vector 
machine(Thayananthan 
et al. 2006) 

RVM No No 

Algorithms marked with an asterisk (*) are described in Hastie et al. (2008).  117 

 118 

Optimum values of the parameters are found by minimizing the root mean square error (RMSE) 119 

of the algorithm when applied to the validation data set. The coefficient of determination R2 and 120 

bias were also used to characterize the correspondence of the modeled LE from different surface 121 

types. The implementation in Matlab of all of these algorithms, with the exception of the random 122 

kernel (RKS), was obtained from package “simpleR” (Lazaro-Gredilla et al. 2014). The RKS 123 

algorithm code was obtained from http://isp.uv.es/code/rks2017.html(Pérez-Suay et al. 2017). 124 

 125 

Initially, one training/ validation iteration was timedfor each ML algorithm using a smaller 126 

training data set. Algorithms that took more than ten minutes for one iteration were removed 127 

from further consideration. The remaining algorithms were timed for one training/ validation 128 
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iteration with a larger training data set. Two of the algorithms (KRR and SVR) that were 129 

tractable with the smaller training data set became too computationally demanding with the 130 

larger training data set. These timing results aregiven in Results section 1.The linear regression, 131 

boost tree, and RKS were used to test the effects on accuracy and computation time of using 132 

different combinations of input variables, as discussed in Results section 2.  133 

 134 

Once the most viable combinations of ML algorithms and input variables had been identified, 135 

each algorithm was tuned by varying all parameters of each algorithm independently. The 136 

optimal tuning parameters with respect to the validation data set (lowest validation RMSE) were 137 

applied to the test data set. Variation in algorithm performance with tuning of parameters and 138 

optimum algorithm performancesare shown in Results section 3. 139 

 140 

The RKS, BAGTREE, and 2 and 3 hidden layer NNs were applied to each of seven ecosystem 141 

types’ test data sets, first with the algorithms optimized using data from all of the sites, and then 142 

optimized using data from sites of the same ecosystem type only. These results are given in 143 

Results section 4. 144 

 145 

 146 

Results 147 

1. Initial time trials of ML algorithms 148 

The time in seconds for each algorithm to run a single iteration of training and validation with 149 

allinput variables is shown in Table 3. If an algorithm took longer than 10 minutes to run a single 150 

iteration, it is labeled “prohibitive” and no further testing was done for that algorithm.  151 
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 152 

 153 

 154 

 155 

Table 3: Time in seconds for one iteration of training and validation for each algorithm. 156 

Algorithm Small training data 
set (7,910 data 
points) 

Large training data 
set (69,752 data 
points) 

RLR 0.0014 0.0087 
LASSO 19.3208 118.1654 
ELASTIC 21.8523 109.0231 
GPR prohibitive  
KRR 219.6609 prohibitive 
RKS, D = 100 0.0945 1.1625 
         D = 400 0.3950 4.7896 
         D = 1000 1.1794 13.026 
         D = 4000 9.1198 91.2732 
TREE 20.2009 351.7759 
BAGTREE 15.9202 114.309 
BOOST (200 trees) 3.1619 9.1393 
NN, 1 HL, 5 neurons 4.0422 102.3333 
        1 HL, 30 neurons 6.2271 207.9746 
        2 HL, 5 x 5 
neurons 

5.5793 108.4992 

        2 HL, 10 x 10 
neurons 

6.0898 131.7211 

        2 HL, 30 x 30 
neurons 

10.0308 436.8679 

3 HL, 5 x 5 x 2 
neurons 

4.6199 128.9298 

    3 HL, 10 x 10 x 10 
neurons 

7.8482 153.7699 

    3 HL, 50 x 5 x 2 
neurons 

12.849 prohibitive 

    3 HL, 150 x 30 x 10 
neurons 

249.671 prohibitive 

ELM prohibitive  
SVR 41.6029 prohibitive 
RVM prohibitive  
VHGPR prohibitive  
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Note: For RKS, “D” represents the number of random functions used. The number of hidden 157 

layers (HL) and neurons in each of the NN trials is also indicated. 158 

 159 

 160 

 161 

2.  Combinations of input variables 162 

In order to test the effects on speed and accuracy of using different combinations of input 163 

variables, trials of a single training and testing cycle were done with the linear regression, boost 164 

tree, and RKS methods using the small training data set. Boost tree RMSE was found after 165 

optimizing the number of trees, but timing trials were done for 100 and 1000 trees. Results are 166 

summarized in Table 4.  Generally, including more input variables produced similar or more 167 

accurate results at little additional computational cost. Using radiation information from surface 168 

measurements produced results of similar accuracy to using the GLASS radiation variables.  169 

 170 

Table 4: Accuracy and timing tests for different combinations of input variables using the 171 

smaller training data set.  172 

 173 
Variables Linear 

regression 
RMSE 
(W/m2) 

Linear 
regression 
timing (s) 

BOOST 
RMSE 
(W/m2) 

BOOST 
timing 
(100 
trees) 
(s) 

BOOST 
timing 
(1000 
trees) 
(s) 

RKS 
RMSE 
(W/m2) 

RKS 
timing 
(s) 

Rn + NDVI 34.68 6.74 x 10-
4 

32.52 2.71 28.25 31.71 0.17 

Rn + NBAR 31.80 0.0032 29.18 3.15 31.11 28.10 0.20 
Rn + NDVI + 
EVI + LAI + 
FPAR + 
NBAR + 
Albedo 

31.78 0.0098 28.03 4.33 38.08 28.10 0.20 
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DSR + NDVI 33.83 8.69 x 10-

4 
33.07 2.70 28.51 31.73 0.17 

PAR + NDVI 33.67 6.72 x 10-
4 

32.89 2.77 27.74 31.84 0.18 

DSR + PAR + 
NDVI 

33.66 0.0016 32.84 2.69 28.88 31.19 0.18 

DSR + PAR + 
EVI 

33.29 0.0013 32.23 2.94 28.96 30.41 0.18 

DSR + PAR + 
NDVI + EVI 

33.21 0.0014 31.62 3.04 28.27 29.78 0.18 

        
DSR + PAR + 
FPAR 

33.62 0.0014 32.75 2.99 27.83 31.09 0.17 

DSR + PAR + 
LAI 

34.47 0.0016 32.46 2.94 28.31 31.10 0.20 

DSR + PAR + 
LAI + FPAR 

33.63 0.0014 31.84 2.80 27.85 30.36 0.20 

DSR + PAR + 
NDVI + EVI + 
LAI + FPAR 

32.90 0.0030 30.53 3.28 31.55 29.14 0.20 

        
DSR + PAR + 
Albedo 

36.96 0.0015 35.85 2.70 26.92 35.49 0.17 

DSR + PAR + 
NDVI + EVI + 
LAI + FPAR + 
Albedo 

32.89 0.0028 30.26 3.26 31.31 28.95 0.18 

        
DSR + PAR + 
NBAR 

31.27 0.0044 29.44 3.46 33.81 28.44 0.19 

DSR + PAR + 
NDVI + EVI + 
LAI + FPAR + 
NBAR 

31.21 0.0058 28.53 3.74 35.94 28.32 0.17 

 174 

The first set of three trials was made with the Rn taken from the ground-based measurements.  175 

The second set of trials tested the effects of using DSR or PAR or both in combination with 176 

NDVI and EVI. Using both radiation variables with NDVI produced better results than using 177 

either of them separately. Using all four variables produced the lowest RMSEs at little additional 178 

computational cost. For all subsequent trials, both DSR and PAR were included. 179 
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 180 

The third set of comparisons tested the use of LAI and FPAR as input variables. The fourth set of 181 

trials included albedo as one of the input data variables. When albedo was the only input other 182 

than DSR and PAR the highest RMSEs for any of the combinations of input variables resulted. 183 

Including NDVI, EVI, LAI, and FPAR along with albedo improved the results to be similar to, 184 

or slightly better than, the trial with those variables but without albedo. 185 

The final set of trials included NBAR as an input andproduced the lowest RMSEs of any 186 

combination.  187 

 188 

Based on the overall patterns in these results, further tuning of all algorithms was conducted 189 

using all of the remote sensing input data variables: DSR, PAR, NDVI, EVI, LAI, FPAR, albedo, 190 

and NBAR. 191 

 192 

3. Tuning of ML algorithms 193 

Each of the algorithms that ran sufficiently quickly to be iterated with each training data set was 194 

optimized with that data set. The overall minimum RMSE results for the validation and test data 195 

sets for all algorithms are shown in Table 5.Notable aspects of the tuning are then described 196 

below for each “family” of algorithms. 197 

 198 

Table 5: RMSE in W/m2 for each optimized ML algorithm 199 

 200 
 Small training data set Large training data set 
Algorithm Validation Test Validation Test 
RLR 30.55 29.84 31.22 30.23 
LASSO 30.55 29.84 31.22 30.23 
ELASTIC 30.55 29.84 31.22 30.23 
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KRR 23.85 23.41 Prohibitive 
RKS 25.35 25.52 22.22 22.10 
TREE 29.19 28.71 25.14 25.45 
BAGTREE 24.50 23.91 19.91 20.15 
BOOST 28.86 28.33 28.21 27.86 
NN, 1 HL 26.42 26.78 23.18 23.48 
NN, 2 HL 25.76 25.20 21.58 22.69 
NN, 3 HL 25.59 25.51 20.94 21.79 
SVR 24.13 23.63 Prohibitive 

Note: Algorithms that are too computationally demanding for training with the large data set are 201 

labeled “Prohibitive”. 202 

a. Linear regression variants 203 

The linear regression variants demonstrated the weakest performance of all algorithm types. All 204 

linear regression variants (RLR, LASSO, and Elastic Net) show a pattern of optimum 205 

performance at zero or low regularization parameter values (<100 for RLR, <0.01 for LASSO), 206 

then worse performance or failure to converge as regularization parameters increase. Including 207 

the regularization parameters provided no advantage over a standard linear regression.  208 

 209 

b. Kernel methods 210 

When optimized, the kernel ridge regression performed better than any of the other algorithms 211 

with the small training data set, but it was too computationally demanding for use with the larger 212 

training data set. The RKS, which is in a sense a faster approximation of the KRR, did not 213 

perform as well with the smaller data set, but improved on that performance significantly with 214 

the larger training data set. Both KRR and RKS had more sensitivity to the kernel width 215 

parameter than to regularization, except for the RKS using a high number (> 1000) of random 216 

functions. Increasing the number of random functions usually produces better performance when 217 

optimized, but at the expense of more sensitivity to the other algorithm parameters. 218 

 219 
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c. Tree methods 220 

The simple tree method was not sensitive to degree of pruning or number of data points required 221 

per partition. Therefore, these parameters were not adjusted in the trials with more complex tree 222 

algorithms.  223 

 224 

Performance of the boosting tree method improved with increasing number of trees up to about 225 

500 trees, then saturated with the larger data set and showed evidence of overfitting with the 226 

smaller data set with higher numbers of trees. (Figure 1). Boost tree algorithm performance was 227 

generally weak overall. The bagging tree algorithm was the strongest performer out of all of the 228 

algorithms with the large data set and shows improved performance with increasing number of 229 

trees and fraction of input data used to construct each, although a saturation effect is evident 230 

when the number of trees exceeds 100 (Figure 2). 231 

 232 

 233 

Figure 1: Validation RMSE versus number of trees used in boost tree algorithm. Red: Small 234 

training data set. Black: Large training data set. 235 
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 236 

Figure 2: Validation RMSE versus number of trees and fraction of data included in each bagging 237 

tree using large training data set 238 

 239 

d. Neural networks 240 

The most notable result of the neural network trials is that two and three hidden layer networks 241 

outperform the single-layer neural network, especially for the larger data set. Performance 242 

generally improves with number of neurons in each layer up to about 50 to 100 neurons in the 243 

first layer but is less sensitive to the number of neurons in the second or third layer if they are 244 

present. Some evidence of overfitting is also present in all neural network results, since RMSE 245 

with the test data set exceeds that with the validation data set, by about 1 W/m2 in the case of the 246 

2 and 3 hidden layer NNs. 247 

 248 

e. Support vector regression 249 

The support vector regression method performed only modestly well with the smaller training 250 

data set, and tuning was computationally prohibitive with the larger training data set. 251 



 16 

 252 

4.  Trials with different ecosystem classes 253 

The two and three hidden layer NN, RKS, and BAGTREE algorithms were used with the test 254 

data sets for each of seven ecosystem types. Initially, the algorithms were optimized using 255 

training and validation data from all sites. Then, each algorithm was tuned using the training and 256 

validation data sets for each ecosystem type, then tested using the test data set for the same type. 257 

Results with the full training data set are shown in Table 6, and results with the like-type-only 258 

training data sets are given in Table 7. 259 

 260 

Table 6: RMSE, R2, and bias for different ecosystem types when ML algorithms are trained with 261 

data from all sites. 262 

Agricultural RMSE(W/m2) R2 Bias(W/m2) 

2 hidden layer NN 32.3557 0.6680 -0.6399 

3 hidden layer NN 23.9863 0.8035 -1.0610 

RKS 26.2128 0.7637 -1.1795 

BAGTREE 17.8557 0.8950 -0.8671 

Deciduous  

2 hidden layer NN 20.2389 0.7416 3.4893 

3 hidden layer NN 18.9362 0.7741 2.0059 

RKS 20.3107 0.7399 4.2604 

BAGTREE 13.4676 0.8918 3.2371 

Evergreen    

2 hidden layer NN 19.0075 0.6874 -0.5384 
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3 hidden layer NN 18.0615 0.7186 -0.4556 

RKS 19.3665 0.6751 -0.0450 

BAGTREE 12.4909 0.8745 -0.0113 

Grassland  

2 hidden layer NN 18.4500 0.7853 -0.1038 

3 hidden layer NN 17.9347 0.7981 -0.1971 

RKS 18.7163 0.7791 -0.2180 

BAGTREE 12.0934 0.9140 -0.0882 

Savannah  

2 hidden layer NN 16.1591 0.8025 -0.8624 

3 hidden layer NN 14.7330 0.8351 -0.5861 

RKS 16.3950 0.8006 -1.3287 

BAGTREE 16.3950 0.8006 -1.3287 

Shrub  

2 hidden layer NN 33.8698 0.3823 -0.3441 

3 hidden layer NN 16.6110 0.7777 -0.1439 

RKS 18.0345 0.7395 -0.8539 

BAGTREE 11.4718 0.9025 -0.6610 

Wetland  

2 hidden layer NN 29.5516 0.8038 -1.3708 

3 hidden layer NN 28.9601 0.8122 -1.8941 

RKS 35.2762 0.7212 -4.4138 
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BAGTREE 
22.9066 0.8878 -4.3023 

 263 

 264 

 265 

Table 7: RMSE, R2, and bias for different ecosystem types with ML algorithms optimized with 266 

training and validation data from the same ecosystem type.  267 

Agricultural RMSE (W/m2) R2 Bias (W/m2) 

2 hidden layer NN 27.7259 0.7354 -0.3191 

3 hidden layer NN 29.6665 0.6971 -1.3922 

RKS 27.2730 0.7440 -0.5729 

BAGTREE 18.5799 0.8851 -0.7525 

Deciduous  

2 hidden layer NN 28.3526 0.4983 -2.0546 

3 hidden layer NN 33.7258 0.2953 -15.1065 

RKS 28.7253 0.5318 6.5990 

BAGTREE 25.8699 0.5878 0.1247 

Evergreen  

2 hidden layer NN 24.2847 0.4945 -7.8675 

3 hidden layer NN 24.8439 0.4796 -6.3154 

RKS 23.6216 0.5208 -6.5283 

BAGTREE 23.7131 0.5169 -3.6958 

Grassland  
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2 hidden layer NN 19.6553 0.7563 -0.3862 

3 hidden layer NN 32.7546 0.3608 -0.3290 

RKS 19.7727 0.7533 0.0463 

BAGTREE 14.6462 0.8689 0.5006 

Savannah  

2 hidden layer NN 16.9383 0.7830 0.6077 

3 hidden layer NN 15.1067 0.8267 -0.2368 

RKS 15.3770 0.8203 -0.3738 

BAGTREE 12.9098 0.8779 -0.3341 

Shrub  

2 hidden layer NN 17.0708 0.7674 0.5069 

3 hidden layer NN 17.9521 0.7403 0.7350 

RKS 17.5338 0.7522 0.0286 

BAGTREE 12.0077 0.8851 0.3511 

Wetland  

2 hidden layer NN 29.4605 0.8055 -0.3557 

3 hidden layer NN 29.4891 0.8055 -0.3742 

RKS 48.4014 0.4812 -0.1796 

BAGTREE 24.9083 0.8606 1.5604 

 268 

The results shown in Tables 6 and 7 show that the ML algorithms performed best for evergreen, 269 

grassland, and shrub sites. Performance was usually worst for wetland sites. The BAGTREE 270 

algorithm was the best performer in most cases, except for the savannah sites when the 271 
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algorithms were trained with all data and the evergreen sites when training was done with data 272 

from the same site type only. Training with data of the same type led to improved algorithm 273 

performance only in the case of savannah sites. This is probably related to the fact that the 274 

optimized algorithm parameters for the smaller individual site type training data sets reached less 275 

complexity (fewer neurons in neural networks, fewer random functions in RKS, and fewer trees 276 

used by BAGTREE) before overfitting became an issue than for the larger all site training data 277 

set.  278 

 279 

Discussion 280 

Here we systematically compared several machine learning methods for obtaining LE from a 281 

smaller or larger remote sensing only input data set. The best results for the smalltraining data set 282 

were with the kernel ridge regression (KRR), which was not viable with the large training set. 283 

Three of the other algorithms (RKS, BAGTREE, and multi-layer neural networks) produced a 284 

lower RMSE with the large training data set than the lowest RMSE attained with the small 285 

training data set. The cloud-detection example given in Pérez-Suay et al. (2017) also 286 

demonstrated this dynamic between the KRR and RKS methods. Here we also had good 287 

performance with the RKS, but even better performance with the bagging tree and multi-layer 288 

neural network. 289 

 290 

Other than weaker performance by the linear regression variants, no family of 291 

methodsoutperformed the rest. Regularization of the linear regression variants did not produce 292 

any improvement to the algorithm results over a standard linear regression.  293 

 294 
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It has been shown that, while some of the ML algorithms perform well in terms of both accuracy 295 

and computational demand, there is also some tradeoff between training efficiency and 296 

performance. This is seen most clearly in the results with the large training data set, where the 297 

BAGTREE algorithm produced the lowest RMSE but required more run time than the RKS, 298 

boost tree, or smaller neural networks.The RKS algorithm is appealing due to its computational 299 

efficiency and low test RMSE. Increasing the number of random functions in the RKS generally 300 

reduces the optimized error, but also renders the algorithm more sensitive to its other parameters. 301 

It is notable that the “deeper” 2- and 3- layer neural networks tested in this study performed 302 

better than the single-layer neural network, since most studies in which neural networks are 303 

applied to the LE problem only make use of single hidden layer neural networks. The multi-layer 304 

neural networks only performed at their best if there were at least 50 neurons in the first layer but 305 

showed less sensitivity to the numbers of neurons in deeper layers. The neural networks showed 306 

more evidence of overfitting than any of the other algorithms, although the difference between 307 

validation and test data set RMSEs was only about 1 W/m2. 308 

 309 

Comparison of ML algorithm performance when trained with data from individual ecosystem 310 

types instead of data from all sites usually showed worse performance, except for savannah sites. 311 

This contrasts with the modest improvement found by Carter and Liang (2018) when non-ML 312 

LE algorithms were tuned using data from individual ecosystem types. However, the poor 313 

performance of the algorithms for wetland sites is consistent with Carter and Liang (2018). It 314 

appears that the ability of the ML algorithms to extract more complex patterns from larger data 315 

sets usually outweighs any advantage gained by restricting training data to one site type only. 316 

 317 



 22 

Conclusions 318 

A comparison of ten ML methods for obtaining LE from a combination of remote sensing data 319 

(GLASS and MODIS) was performed in terms of accuracy and speed. The results showed wide 320 

variation in algorithm efficiency.Including more input variables improved the results with little 321 

or no additional computational cost. Use of GLASS radiation products produced results 322 

comparable to using ground-based net radiation measurements. Inclusion of NBAR as one of the 323 

parameters produced the best results. 324 

 325 

The best performance with a smaller training data set was obtained using the kernel ridge 326 

regression (KRR), which was too computationally demanding for use with the larger data set. 327 

The best performance with the larger data set was achieved by the bootstrap aggregation tree 328 

(BAGTREE) method, followed by the random kernel (RKS) and multiple hidden layer neural 329 

network (NN) methods. The BAGTREE, neural network, and RKS algorithm performance could 330 

be improved modestly for some ecosystem types by using training data from that ecosystem type 331 

only. 332 

 333 

Since the machine learning techniques evaluated here can be applied to any combination of input 334 

variables, it should be possible to use them to generate global, long-term records of LE. The 335 

GLASS data sets (Liang et al. 2013, 2014), which include albedo (Qu et al. 2014; Liu et al. 336 

2013), leaf area index (Xiao et al. 2016, 2017a), and NDVI (Xiao et al. 2017b) in addition to 337 

radiation variables, are based on the AVHRR and MODIS records, and therefore provide the 338 

opportunity to examine global LE trends over decades. 339 

 340 
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Figure 1: Validation RMSE versus number of trees used in boost tree algorithm. Red: Small 

training data set. Black: Large training data set. 

 



 

Figure 2: Validation RMSE versus number of trees and fraction of data included in each bagging 

tree using large training data set 

 




